EXTENSION OF A BETA FUNCTION INEQUALITY

نویسندگان

چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On a $k$-extension of the Nielsen's $beta$-Function

Motivated by the $k$-digamma function, we introduce a $k$-extension of the Nielsen's $beta$-function, and further study some properties and inequalities of the new function.

متن کامل

Extension of Hardy Inequality on Weighted Sequence Spaces

Let and be a sequence with non-negative entries. If , denote by the infimum of those satisfying the following inequality: whenever . The purpose of this paper is to give an upper bound for the norm of operator T on weighted sequence spaces d(w,p) and lp(w) and also e(w,?). We considered this problem for certain matrix operators such as Norlund, Weighted mean, Ceasaro and Copson ma...

متن کامل

A Univariate Extension of Jensen's Inequality

The result in this paper exp lains some of the qualitative nature of Jensen's inequality. It is shown that the more disperse the distribution of a random variable is, the smaller is the expectation of any concave function of it. This result can be used to show the inadequacy of some current methods of reporting environmental data by using geometric means, and it extends the resu lt of I. Billic...

متن کامل

An extension of Maclaurins inequality

Let G be a graph of order n and clique number !: For every x = (x1; : : : ; xn) 2 Rn and 1 s !; set fs (G;x) = X fxi1 : : : xis : fi1; : : : ; isg is an s-clique of Gg ; and let s (G;x) = fs (G;x) ! s 1 : We show that if x 0; then 1 (G;x) 1=2 2 (G;x) 1=! ! (G;x) : This extends the inequality of Maclaurin (G = Kn) and generalizes the inequality of Motzkin and Straus. In addition, if x > 0; for e...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Mathematical Sciences: Advances and Applications

سال: 2017

ISSN: 0974-5750

DOI: 10.18642/jmsaa_7100121855